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ABSTRACT

Exact synthesis algorithms for planar mechanisms for rigid-
body guidance are limited by the number of poses the mech-
anism can position the rigid-body in Euclidean space. The
mixed exact-approximate synthesis algorithm described guides
a rigid exactly through two positions and approximately
through n guiding positions. It breaks down a rigid-body
guidance task into n sub-problems of three positions to be
solved by an exact synthesis algorithm. A novel algorithm
utilizing MATLAB’s constrained non-linear optimization
tools is proposed. The algorithm can be utilized to find
within a bounded design parameter space the RR dyad that
exactly reaches two positions and minimizes the distance to n
positions. Two such dyads can be synthesized independently
and then combined to yield a planar four-bar mechanism.
An example using the proposed algorithm to design a pla-
nar four-bar mechanism to solve McCarthy’s 11-position
synthesis problem stated at the 2002 ASME Conference is
included.
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1. Introduction

A mechanism is a mechanical device that has the purpose
of transferring motion and/or force from a source to an
output [12]. An RR dyad comprises of a rigid link and
two revolute joints, as shown in Fig. 1 where AB represents
the rigid link and A and B are the R joints. The fixed
pivot u, is considered stationary with respect to a fixed
reference frame [F ]. The moving pivot v, is stationary with
respect to a moving reference frame [M ]. This RR dyad
can be part of a planar linkage and used to perform various
kinematic synthesis tasks such as function generation, path
generation and rigid-body guidance. Considering the rigid-
body guidance (RBG) problem, the RR dyad is required to
guide a rigid-body through a sequence of precision positions
or poses. Each position is a location in terms of Euclidean
coordinates (x, y) and orientation (θ) with respect to the
fixed reference frame [F ]. An RR dyad can be synthesized
using exact synthesis or mixed exact-approximate synthesis.
Using classical Burmester Theory [8, 12] for exact synthesis,
it is possible to determine an RR dyad that will guide a rigid-
body exactly through a maximum of 5 prescribed poses.
However, for more number of prescribed poses (>5), an
exact synthesis technique cannot generate solutions and a
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Figure 1. PLANAR RR DYAD GEOMETRY AND NOMENCLA-
TURE

mixed exact-approximate synthesis technique is utilized. In
such scenarios, the RR dyad need only satisfy the exact
positions and approximately guide the rigid-body for the
remaining prescribed positions.

Related works

A modest amount of research has been done over the
years towards developing mixed exact-approximate synthe-
sis algorithms. One of the earliest works in mixed exact-
approximation was undertaken by Mirth [9], who used the
properties of Burmester curves to generate a solution space
for three precision and n number of approximate positions.
Mirth treated the problem as multiple four-location prob-
lems to yield multiple Burmester curves. The final solution
space was obtained by intersecting the dyad solution space
obtained from each four-location sub-problem. Holte et
al. [5] developed mathematical techniques based on fuzzy
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constraints to generate overlapping solution spaces similar to
[9]. Their work claimed that optimization was not required
to find the solution space; rather it could be used to improve
the designer’s ability to find good working solutions. Mlinar
and Erdman [10] introduced the notion of Burmester field
generated by varying a design parameter to fit approximate
positions. The workable linkage would be determined from
the Burmester curves contained in the Burmester field.

Researchers have also explored optimization techniques
using mixed exact-approximate synthesis to generate opti-
mal linkage for motion generation. Bulatovic and Djordjevic
[3] proposed a method of controlled deviations to control
the motion of the coupler in a four-bar linkage. The
Hooke-Jeeves’ optimization method they use is a method
of direct searching and does not use deductions of the
objective function. Rather, it compares its values in each
iteration and changes mechanism parameters in the direction
of minimizing the value of the objective function. Smaili
and Diab [13] discuss a closed path mixed-exact approxi-
mate synthesis algorithm based on optimum synthesis as
opposed to using loop-closure equations. They utilized
an objective function based on log10 of the error between
the desired positions and those generated by the optimum
solution. Akhras and Angeles [1] discuss unconstrained non-
linear least-squared techniques in the optimization of planar
linkages for rigid-body guidance. They utilize a variable-
separation technique to isolate configuration parameters and
evaluate these parameters by formulating an unconstrained
overdetermined system of nonlinear algebraic equations.
Gogate and Matekar [4] use evolutionary methods with
alternate error functions based on displacement of pole
positions and fundamental geometrical properties of the
four-bar mechanism for rigid-body guidance.

Organization of the Paper

This paper describes methods to synthesize optimal RR
dyads that can be used to assemble a planar linkage for
rigid-body guidance. The task is such that the linkage is
required to guide the rigid-body exactly at the pick and place
positions and approximately through n guiding positions.
The RBG task is broken into n sub-problems of an exact
synthesis algorithm that will exactly guide the rigid-body
through three positions. The optimization process entails
minimizing a multivariate objective function by starting at
multiple initial points over a given set of design parameter
space constraints. The objective function is a function
of the outcome of the n sub-problems. MATLAB’s [7]
constrained non-linear optimization tool fmincon is used to
synthesize optimal RR dyads. Two optimal RR dyads may
be combined to form a optimal four-bar mechanism. Finally,
the algorithm is tested against McCarthy’s 11 position
synthesis problem stated at the 2002 ASME Conference [2].

MIXED EXACT-APPROXIMATE SYN-
THESIS

A mixed exact-approximate synthesis algorithm of an RR
dyad for pick-and-place tasks is described in [6]. Consider
the pick-and-place task of guiding a rigid-body through an
exact pick and place position and approximately through
n guiding positions. These positions may be denoted as
[Mi] = [A(θi),di], i = pick, 1, . . . , n, place with respect to a
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Figure 2. ALGORITHM OF MIXED EXACT-APPROXIMATE
SYNTHESIZE OF RR DYADS

fixed reference frame [F ], where A(θi) ∈ SO(2). The mixed
exact-approximate synthesis of an RR dyad is broken into n
sub-problems of a three position exact synthesis algorithm.
Each sub-problem is solved as an exact synthesis task with
the three positions {pick, i, place} where, i = 1, . . . , n.

Notation of an RR dyad

An RR dyad is characterized by a rigid link and two revolute
pivots as shown in Fig. 1. For the exact synthesis of an
RR dyad for three or more positions, the fixed pivot u and
moving pivot v have a one-to-one onto mapping f with
respect to each other i.e., f : u ↔ v. For the sake of
generality, the notation p can represent either a fixed pivot
or moving pivot i.e., say p is a single element of the set
P ∈ {u,v}. The complimentary pivot of p is cp = P \ p.
An RR dyad can be denoted as (p, cp). The designer can
choose p and determine the cp from a three position exact
synthesis algorithm. Given p, the n sub-problems of the
mixed exact-approximate synthesis can be solved to obtain
a set of cpi which is later used in the objective function of
the optimization process.

Exact Synthesis Algorithm

Planar four-bar mechanisms may be formed by connecting
the end-link of two RR dyads [8]. Each such RR dyad is to be
synthesized such that it reaches a set of three task positions
given by the displacement [Mi] = [A(θi),di], i = 1, 2, 3 with
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respect to a fixed reference frame [F ], where A(θ) ∈ SO(2).
The moving pivot v with respect to [Mi] can be represented
as Vi in [F ] by Vi = [A(θi)]v + di. All such moving pivots
Vi are constrained to lie on a circle of radius d around the
fixed pivot u, that is,

(u−Vi)·(u−Vi) = (u−[A(θi)]v−d)·(u−[A(θi)]v−d) = d2

(1)
These equations yield a unique solution for either the fixed
pivot u or the moving pivot v for an arbitrary choice of the
other [8].

Select the moving pivot

Given a moving pivot v for three prescribed positions, there
are many methods to solve for a fixed pivot u. However, this
paper focuses on Larochelle’s method [6]. The constraint
equation given in Eqn. (1) is applied to each task position to
obtain three such equations. The first equation is subtracted
from the remaining two to arrive at a linear system of
equations:

[P]u = b (2)

where,

[P] =

[
2(VT

2 −VT
1 )

2(VT
3 −VT

1 )

]
,

b =

[
VT

2 V2 −VT
1 VT

1

VT
3 V3 −VT

1 VT
1

]
.

The fixed pivot u of the dyad that reaches all three task
positions can be computed by solving the above linear
system using standard linear algebra techniques.

Select the fixed pivot

Given the fixed pivot u for three prescribed positions, the
paper proposes the following method to solve for a moving
pivot v. The constraint Eqn. (1) is re-arranged to solve
for the moving pivot v and applied to each task position
[Mi] = [A(θi),di]. The first equation is subtracted from
the remaining three constraint equations and the following
linear system is obtained:

[Q]v = c (3)

where,

[Q] = 2

[
(u− d2)T [A2]− (u− d1)T [A1]
(u− d3)T [A2]− (u− d1)T [A1]

]
,

c =

[
(dT

2 d2 − dT
1 d1) + 2(dT

1 − dT
2 )u

(dT
3 d3 − dT

1 d1) + 2(dT
1 − dT

3 )u

]
.

Mixed Exact-Approximate Synthesis: Com-
putational Procedure

Problem Statement: Given the fixed pivot u or moving
pivot v, synthesize a planar RR dyad to guide a rigid-body
from an initial position (pick) to a final position (place) while
guiding it approximately through n positions.
Input : p, (xi , yi , θi) ∀i ∈ {pick, 1, . . . , n, place}
Solution : The problem is solved using two approaches as
follows:

Select a fixed pivot :

1. Compute [Mi] = [A(θi),di] for all i ∈ {pick, 1, . . . , n, place}

2. Solve Eqn. (3) using the three positions Mpick, Mi,
Mplace for i = 1, . . . , n to yield the set of moving pivots
vi, i = 1, . . . , n.

3. Compute v = 1
n

∑
vi.

Select a moving pivot [6]:

1. For all i ∈ {pick, 1, . . . , n, place}

(a) Compute [Mi] = [A(θi),di]

(b) Compute Vi = [A(θi)]v + di

2. Solve Eqn. (2) using the three positions Mpick, Mi,
Mplace for i = 1, . . . , n to yield the set of fixed pivots
ui, i = 1, . . . , n

3. Compute u = 1
n

∑
ui.

The above algorithm is represented as a flowchart in Fig. 2.

SYNTHESIS OF OPTIMAL DYADS

The proposed constrained non-linear optimization problem
maybe described as:

min
p

loge

n∑
i=1

‖cpi − cp‖2

subject to

[
αx

αy

]
≤ p ≤

[
βx
βy

]
Given the constraint space of p = [px, py]T , the fmincon

tool in MATLAB is used to determine an optimal pivot cp∗

constituting an optimal RR dyad. The optimal pivot p∗ is
then computed using the exact synthesis algorithm shown in
Fig. 2 to completely determine the optimal dyad (p∗, cp∗).

The Objective Function

The multivariate objective function �cp is a function of cpi,
where i = 1, . . . , n.

�cp = loge

n∑
i=1

‖cpi − cp‖2 (4)

The objective function can be interpreted as an ”approxi-
mation quality measure”, described by Larochelle [6], which
measures the degree to which the n guiding positions are
being reached by each planar RR dyad. The set of cpi are
obtained from the n sub-problems of the three position exact
synthesis for the positions {pick, i, place}, where i = 1, . . . , n.
The objective function calculates the deviations of the set
of cpi from it’s mean pivot cp using the Euclidean distance
between each cpi and cp. This distance is scaled using
loge which ‘scales up’ the set of cpi closer to it’s mean
cp and the ‘scales down’ the set of cpi farther from it’s
mean cp. The loge scaling brings out peak, valley and
ridge characteristics of the objective function as shown in
Fig. 4(b) and comparing it with an unscaled version of the
same objective function in Fig. 4(a). Note that cp = u in
Fig. 4. The loge scaling helps in finding better local minima
solutions.
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Design Parameter Space

The choice of p = [px, py]T is a design parameter whose
space is defined by the inequality constraints of the opti-
mization problem. The parameters (αx, βx, αy, βy) bound
this design parameter space such that,[

αx

αy

]
≤ p ≤

[
βx
βy

]
(5)

The fixed pivot space is defined with respect to [F ] as
shown in Fig. 3(a) and the moving pivot space is defined
with respect to [M ] as shown in Fig. 3(b).

Discretization of Design Parameter Space

In order to determine the global minimum within the
bounded design parameter space, a multi-start approach is
utilized. The design parameter space is discretized with a
resolution determined by the designer and stored in [R].
Each discrete element of [R] will serve as a starting point
for the optimization routine, refer Fig. 2.

Synthesis of Optimal Dyad: Computa-
tional Procedure

Problem Statement: Synthesize an optimal planar RR
dyad (p∗, cp∗) to guide a rigid-body from an initial position
(pick) to a final position (place) while guiding it approxi-
mately through n positions.

Input : p, (xi , yi , θi) ∀i ∈ {pick, 1, . . . , n, place}, design
parameter space constraints of p = [px, py]T such that αx ≤
px ≤ βx, αy ≤ py ≤ βy.
Solution:

1. Compute [Mi] = [A(θi),di] for all i ∈ {pick, 1, . . . , n, place}
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Figure 5. ALGORITHM TO SYNTHESIZE OPTIMAL RR DYADS

2. Discretize the design space constraint and store it in
[R]. Each element of [R] will serve as a starting point

3. For each element of p ∈ [R],

(a) Compute cp using exact synthesis algorithm for
Mpick, Mi, Mplace

(b) Minimize �cp = loge

∑n
i=1 ‖cpi − cp‖2

4. Find cp∗ for the least value of �cp

5. Compute p∗ using exact synthesis

The above algorithm is described as a flowchart in Fig. 5.
Since, two dyads may be combined to form a four-bar
mechanism, the algorithm is executed twice; once for each
dyad. The optimal dyads are denoted as, dyad a: (p∗

a, cp∗
a)

and dyad b: (p∗
b , cp∗

b).

EXAMPLE: 11 POSITION PROBLEM

The proposed algorithm is now employed to synthesize
a planar four-bar mechanism for 11 positions; with pick
and place positions along with nine guiding positions as
shown in Table 1. This rigid-body guidance problem was
proposed by McCarthy at the 2002 ASME Conference [2].
The example was run on a 3.20 GHz Intel R© i5 CoreTM

CPU. The computation time for each case study took
about 100 seconds on an average for each dyad when the
optimization routine used 900 starting points. The mixed
exact-approximate synthesis algorithm allows the designer
to synthesize an RR dyad by either choosing the fixed pivot
u or moving pivot v as design parameter space constraints.
An optimal four-bar mechanism is obtained by combining
two optimal RR dyads a: (p∗

a, cp∗
a) and b: (p∗

b , cp∗
b) which

may be synthesized by the following two ways:

Case 1: Constrained ua and ub

The following design constraint space in ua = [uax , uay ]T

and ub = [ubx , uby ]T is considered:

0 ≤ uax ≤ 5

0 ≤ uay ≤ 2

−5 ≤ ubx ≤ 1

−5 ≤ uby ≤ 1

The synthesis of optimal dyads algorithm described in
Fig. 5 yielded optimal dyad a: u∗

a = [2.1991, 1.6465]T ,
v∗
a = [1.4245, −1.9397]T with an objective function score of
�va = 0.1522, and optimal dyad b: u∗

b = [0.8008, 0.3536]T ,
v∗
b = [1.5754, −0.0602]T with an objective function score

of �vb = 0.1523. Based on these optimal pivots, a 0 − π
double-rocker four-bar mechanism was obtained, as shown
in Fig. 6.

Case 2: Constrained va and vb

The following design constraint space in va = [vax , vay ]T

and vb = [vbx , vby ]T is considered:

0 ≤ vax ≤ 4

0 ≤ vay ≤ 20

1 ≤ vbx ≤ 5

−5 ≤ vby ≤ 5
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Table 1. ELEVEN POSITION PROBLEM

# x y θ (deg) Motion Type

1 -1 -1 90 exact
2 -1.2390 -0.5529 77.3621 approximate
3 -1.4204 0.3232 55.0347 approximate
4 -1.1668 1.2858 30.1974 approximate
5 -0.5657 1.8871 10.0210 approximate
6 -0.0292 1.9547 1.7120 approximate
7 0.2632 1.5598 10.0300 approximate
8 0.5679 0.9339 30.1974 approximate
9 1.0621 0.3645 55.0346 approximate
10 1.6311 0.0632 77.3620 approximate
11 2 0 90 exact

The synthesis of optimal dyads algorithm described in
Fig. 5 yielded optimal dyad a: u∗

a = [0.6744, 0.4559]T ,
v∗
a = [1.4985, 0.0064]T with an objective function score of
�va = 0.4979, and optimal dyad b: u∗

b = [0.7934, 0.3758]T ,
v∗
b = [1.5976, −0.0528]T with an objective function score

of �ub = 0.9522. Based on these optimal pivots, a π − π
double-rocker four-bar mechanism was obtained, as shown
in Fig. 7.

Interpretation

The above case study was simulated in MATLAB and a
screenshot of each optimal four-bar linkage is represented
in Fig. 6 and Fig. 7. By visually inspecting the simulation,
it was clear that the optimal linkage represented in Fig. 6
seems to approximately reach all 11-positions whereas the
same could not be stated for the optimal linkage represented
in Fig. 7. A driving RR dyad [11] may be added to this
optimal four-bar linkage to form a Watt-II linkage and also
to limit the motion of the optimal four-bar linkage.

CONCLUSION

The synthesis of RR dyads for n position guidance prob-
lems using mixed exact-approximate synthesis has been
performed. MATLAB’s constrained non-linear optimization
tool has been used to run the optimization algorithm
that computed optimal pivots within a design parameter
constraint space. The proposed algorithm has been tested
against McCarthy’s 11-position rigid-body guidance prob-
lem stated at the 2002 ASME Conference [2].
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Figure 6. CASE 1: OPTIMAL 4-BAR LINKAGE
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Figure 7. CASE 2: OPTIMAL 4-BAR LINKAGE
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